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1. -tlOar Of tlu pFobl_ ud !Uturo Of rolUtl0M. It la well known 
that In the gravitational field 8 a nonuniformly heated fluid can be In 
equilibrium only when the temperature gradient Is vertical 

g= -YYg, VTo = Ay (Ya = I) (1.1) 

If A - const then the following equations are obtained for small per- 
turbations of equilibrium (they are proportional to e-xt) ): 

-III=-vp+v%fCyT 

- IPT = OaT - Cyu, div u = 0 (C*= agRa 1 A 1 / vx, P = v lx) (1.2) 

Here all quantities are nondimensional; the length R (which character- 
izes the dimension of the cayfty), the time R~/v, the velocity v/R , the 
temperature (v /fl) (1 A 1 v /agX) *; are selected as unite; nondimensional para- 
meter0 are f? the Raylelgh number, and p the Prandtl number. One of the 
terms ln the equations has the f sign. Here and everywhere ln the follow- 
ing presentation the upper sign refers to the case when A > 0 (the fluid la 
heated from above), the lower sign refers to the case when A < 0 (heating 
from below). The system of equatlone (1.2) has an infinite sequence of solu- 
tions for pairs of functions {u,,T,) and for decrements h,. These solu- 
tions are orthogonal to each other In the following sense: 

j (u,up ‘i;: PT,T$ dV = C6,p (C = const) (1.3) 

The perturbation with the Index Q 
turbation decays If Re h, > 0. 

Is monotonoue If Im h, = 0. The per- 

In a fluid heated from below, perturbations either decay monotonously or 
grow monotonously [l] so that for A < 0 the equilibrium may either be 
stable or unstable. 

When a fluid la heated from above (A > 0) all perturbations decay, but 
not necessarily monotonously Cl] . from (1.2) results the following Integral 
relationship: 

(A - h+) 5 {II%-PT*T} dV = 0 (1.4) 

from this It Is evident that complex 1 are possible whenthe lnte ral in 
(1.4) Is equal to zero. For monotonous perturbations this lntegra f colncldes 
with the no_rm@lzlng integral (1.3). “There are tug type8 of monotonous per- 
turbations - thermal {ulo, T1=} and hydrodynamic (uzcl, Ta,}. For these 
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we have 

normallzirig integrals of different typea pf perturbations have therefore 
different signs. For C - 0 
pears and only the temperature 

in thermal aerturbatlona.the velocity dlsap- 
remaina, 

opposite Is the case. 
In hydrodynamic perturbations the 

An entirely analogous situation wa8 once before encountered by one of the 
authors In the lnveetlgatlon [2] of the epectrwn of perturbations ln a con- 
ducting fluid ln a magnetic field. Heating from above make6 the equations 
not self-conjugate and 80 elmllar to equations In magnetohydrodynamlcs that 
the following assertions can be made 123 . In a fluid heated from above there 
are no oscillatory perturbations for small values of C . From some C - C*, 
decrements of two monotonous perturbations of different type and Identical 
eymmetry can intersect. Then for C > C,, instead of two monotonous pertur- 
bation In the spectrum, two oeclllatory perturbations appear with complex 
conjugate decrements. 
becomes zero. 

At the very point C, one of the normalizing Integrals 
These theoretical concluelons are fully confirmed by the exam- 

ple given below. For thle example Equation (1.2) has an exact solution. 

2. WI@ oaaa of 8ho 0x806 rolutlon. Let UB examine perturbations of equl- 
llbrlum ln a fluid ln a aoherlcal cavity heated from above or from below. 
III&PI; loal coordinates r, 6, 0 with the polar axla along y and with the 

KS boundary condition8 

u = 0, T=O for r = 1; u, T bounded for r = 0 (2.1) 

Equations (1.2) have a class of exact solutions with the following struc- 
ture (*) 

u = u(r) r x v [sin mcpPlm (cos@)l 

T = 8 (r) cos mcp PIm (cosf)), p=f(r,8)cosmcp (2.2) 

Here P~“‘(cose) are associated Legendre polynomials. 
(2.2) Into Equations (1.2) ylelda for example 

Substitution of 

V’u= [*I sin nqPlm (co.30) - 61 w Pp (cosf3) Lv (r) 1 
( d’ d 1 (I + 1) 
L=d7+2‘-&- - 

? I 

yu = (r~ cos6 - @I sine) u (r) 
[ 
91 sin mcp (Pp). - & mg Plm 1 - = mv (r) cas mqPlm (case) 

The dot indicates here differentiation with respect to 6. 

Scalar muJtlpllcatlon of the first equation of the system (1.2) ln turn 
by 6, and cpl, yields 

(li b_ L) u (r) $ Plm (cost)) = - ‘F T CO (r) sinf3 Plm (co9 8) (2.3) 

(k+L)~(r)Plm*(cose) = - sej(r,e) (2.4) 

Caloulatlng from the last equation the derivative 

- 1’ (r,e) = (A + L) ‘2 [sin6 (PI” (cosfl))‘* + cost3 (Plm (costt))*] = 

= (A + L) * sin6 [$& - 1 (1 + I)] Plm (~0~6) 

c6e solutions were found by Sorokln (see note with respect to reference 
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and substituting It into (2.3) we obtain after slmpllflcatlon 

Of 

q (k + L) v(r) = T ce (r) 
The second equation of the system (1.2) gives 

(2.5) 

(3cp + L) 0 (r) = mcv (r) (2.6) 

Thus, for finding radial functions v(r) and e(r) we have the system 
equations 

v* + 2+ + 
11 
1 

l(I + I) 
-7 1 v=5(l+t) A0 

e"+2; + b- l(lT 1'10 - mco 
(2.7) 

This system of equations must be solved with the following boundary con- 
ditions 

v(1) = 0, 8 (I) = 0; v (0), fJ (0) - finite (2.8) 

We will look for a specific solution of (2.7) and (2.8) In the form 

v(r) = s J,+r,, (W, 
If; 

9 (r) = -&J 9 r l+‘l, (kr) (2.9) 

Here Jl+a/, (Ar) Is a Bessel function of the first kind. For B and D 
we obtain two algebraic equations 

(A (ti-k’)D=mCi? (2.10) 

which are conslsten If 

(A-P)(A.P-As) * &=O (2 11) 

Prom this two values, 
general solution, bounded ",i 

*and A' are obtained for ks so that the 

equations (2.7), has the form 
the or&~ of coordinates, for the system of 

v(r)= &J 1+a,1 (kc) -d- f$ JI+~,, (W 
D,J 

Vr 
9 (4 = vi DIJ ,+,,, (W + vi I+‘,, (Ml (2.12) 

Among the 
according to 

four constants entering into (2.12) onlytio will be Independent; 
(2.10) 

d4 
'1 = T f(1 + 1) (A - k,') ’ 

&B, 
a = (p - b’) (2.13) 

Ccefflcients D, and Ba are subject to determination from boundary condl- 
tlons (2.8) on the surface of the fluid sphere. It Is easy to see that two 
types of solutions exist which satisfy these condltlons 

1) B, = 0, fJ1 (r) = D,J 
)/-; I+‘/. (hrh 

&Dl 
vl(r) = 7 l(1 + 1) (I. - k,‘) 

J[+*,, (klr) 

2) D, = 0, 

p/; (2.14) 

4 (r) = BI J,,,,, (W), 
mcB, Jt+ll. (kr) 

Ifi 
h(r) =p _ bs vy (2.15) 

According to the claslflcatlon adopted In Section 1, the solution 
corresponds to "thermal" and (2.15) to "hydrodynamic perturbations . 

(2;1A;) 

both pertutbatlons, the conditions (2.8) yield 

J,+I,, (4,) 5 0 (n = I, 2, 3, . . .) (2.16) 



Here n Is the number of nodes of the radial function. 
and (2.16) determine decrements A, of "thermal" 

Equations $2.11) 
and decrements X2 of hydro- 

dynamic" perturbations as functions of Rayleigh number e 

4mVP ‘11 
a - 1, lmn 

= & [(P + 1) k,,’ - ((P - iJa k,,’ 7 
1 (1 -t- 1) )I 

a k,," -f ((P - i)a k,,’ F z)“] 
We also present the value for the normalizing Integral, for 

the "hydrodynamic" perturbations 

(2-W 

example, for 

The critical value C,, above which the equilibrium of a fluid heated from 
below Is unstable with respect to a perturbation with speclflc lrrn,n is 

found from thk condition 

k 1mn=O 

Computations yield 

-8UO -400 a 400 600 

Fig. 1 

C 2 = ’ (’ + ‘) k 
0 ma n (2.19) 

In heating from above, critical 
C,,, can be reached for which X, 
and A, as determined from (2.17) 
coincide 

A, = h, = 5, = 
p+1 

2p kna 

c * 2 = (p - i)'kn4 l(1 + I) 
4Pma 

(2.20) 

while integral (2.18) becomes zero. 
For C > C, two oscillatory per- 
turbations appear oscillating with 
the frequency 

[p+)y VCa (2.21) 
Real parts of decrements of these pertutbations do not depend on C and 

are equal to A, . 

We note that the relationship 

c,a (P - ua 
co2 - - 4P 

does not deperid on the index of perturbation and will be general for the 
entire spectrum of decrements. Several lower decrements for a fluid with 
p = 2 are presented In Fig.1 where curve 1 corresponds to values 1 =m =n = 1, 
curve 2 to values 1 = m = 2, n = 1 and curve 3 to values 1'2, m=n=l. 
Heating frbm below corresponds to negative Raylelgh numbers. 

The problem which was examined can also be solved for other boundar 
dltlons. For example, in the case of thermally insulated walls (o~(~T Z"iij 
decrements A(C) are found from Equation 

J,+I,, (4) I(1 + 1) J,,,,, (kid + bJ,_s,, WI h - kl* 

J,+I,, (W Iti + 1) J,+I,, W + k,J,_a,, Ml 
a- 

h - Irs* 

where kl and ka are expressed through X and C from (2.11). 
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