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1, Bquations of the prodlem and nature of solutions. It is well known
that in the gravitational field g a nonuniformly heated fluid can be 1in
equilibrium only when the temperature gradient 1s vertical

g=—¥8, VTo= Ay v*=1 (1.1)

If A4 = const , then the following equations are obtained for small per-
turbations of equilibrium (they are proportional to e“lﬁ :

— M =—Vp+ ViutCyT
—APT =T —Cyu, divu=10 (C*=agR¢[A]|/vy, P=~/%) (1.2

Here all quantities are nondimensional; the length £ (which character-
izes the dimension of the cag}ty), the time R2 /v, the velocity v /R, the
temperature (V/R)(|A|v/agy); are selected as units; nondimensional para-
meters are (° the Rayleigh number, and p the Prandtl number. One of the
terms in the equations has the 1 s8ign. Here and everywhere in the follow-
ing presentation the upper sign refers to the case when 4 > O (the fluid is
heated from above), the lower sign refers to the case when 4 < O (heating
from below). The system of equations (1.2) has an infinite sequence of solu-
tions for pairs of functions {(u,,7,} and for decrements A,. These solu-
tions are orthogonal to each other in the following Bsense:

§ (ugu, F PT, Ty v = C8, (C = const) (1.3)

The perturbation with the index o is monotonous if lm A, = 0. The per-
turbation decays if Rel, > 0.

In a fluid heated from below, perturbations either decay monotonously or
grow monotonously [1] so that for A4 < O the equilibrium may either be
stable or unstable,

When a fluld is heated from above (4 > O) all perturbations decay, but
not necessarily monotonously [1]. Ffom (1.2) results the following integral

relationship:

P (A —2* § {(u*u—PT*T}dV =0 (1.4)
from this it is evident that complex A are possidble whenthe integral in
(1.4) is equal to zero, For monotonous perturbations this integral coincides

with the normglizing integral (1.3). .Ihere are twg types of monotonous per-
turbations — "thermal {ula,Tla} and "hydrodynamic (“2a’7}a}' For these
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we have
§udav cp {724, §u,2avy P § T2av

normalizing integrals of dif!‘erens types of perturbations have therefore
different signs. For (¢ - O in "thermal® perturbations the velocity disap-

pears and only the temperature remains, in "hydrodynamic" perturbations the
opposite is the case,

An entirely analogous situation was once before encountered by one of the
authors in the investigation [2] of the spectrum of perturbations in a con-
ducting fluid in a magnetic field. Heating from above makes the equations
not self-conjugate and so similar to equations in magnetohydrodynamics that
the following assertions can be made [2]. In a fluid heated from above there
are no oscillatory perturbations for small values of ¢ . Prom some ( = Cu>
decrements of two monotonous perturbations of different type and identical
symmetry can intersect. Then for (¢ > Cus» instead of two monotonous pertur-
bation in the spectrum, two oscillatory perturbations appear with complex
conjugate decrements. At the very point (, one of the normalizing integrals
becomes zero. These theoretical conclusions are fully confirmed by the exam-
ple given below. Por this example Equation (1.2) has an exact solution.

2, The case of the exaot solution., Let us examine perturbations of equi-
librium in a fluid in a spherical cavity heated from above or from below.
In spheriocal coordinates r, 9, @ with the polar axis along y and with the
followl. boundary conditions

u=0, T=0 for r={; u, T bounded for r =0 2.1)
légru:tj(.gx)m (1.2) have a class of exact solutions with the following struc-
u=v()r x VYV [sin mpP;™ (cos®)]
T = 9 (r) cos mp P;™ (cos ), p = f(r,8) cos mg (2.2)

Here P™(c0s®) are assoclated Legendre polynomlals. Substitution of
(2.2) into Equations (1.2) ylelds for example

. m cos m@
Viu= [(pl sin m@P;™ (cos®) — &, —sing_ P (cosO)] Lv (r)

(o fpad - LOED)

yu = (r1 cos® — 0, sin®) v (r) [qn sin mp (P™) — 0 'f:ifl’;:q’m'"] =

= muv (r) cos m@P™ (cos )

The dot indicates here differentiation with respect to €.

Scalar multiplication of the first equation of the system (1.2) in turn
by ¢, and ¢,, yields

(L) v () o P (cos) = — /(+0] TCO(r)sin® Pm(cos )  (2.3)
(A +L1) v () P™ (cos®) = — s f (r, 8) @4
Caloulating from the last equation the derivative

—f(r®)=QA41L) rv% [sin® (P/™ (cos®))” 4 cos® (P;™ (cos®))) =
rv (r) 2

= (A +L)—- sin® [Si;’: p— LU+ 1)]P,"‘ (cos®)

*) These solutions were found by Sorokin (see note with respect to reference

£31).
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and substituting it into (2.3) we obtain after simplification

(XY i
V0 snvm=Foo0 .5
The second equation of the system (1.2) gives
AP +-L)8 (r) = mCv(r) (2.6)

Thus, for finding radial functions v(r) and 6(r) we have the system
of equations

L2 (1 4 1) mC
L T

26’ (1% 1 @7
SUC T, 3y N,
This system of equations must be solved with the following boundary con-
ditions
v()=0, 0 =0 v (0), 6(0) — finite (2.8)
We will look for a specific solution of (2.7) and (2.8) in the form
B D
v () = 37271, ), 0 () = 7= J, ) 2.9)

Here Jbﬂh(kﬂ is a Bessel function of the first kind, For 5 and D
we obtain two algebralic equations

mC

(A —kB =T ml), (AP — k%) D = mCB (2.10)
which are consisten if
m3C3
(l—-k')(lP—k‘)j:,—(,—_;T)=0 211

From this two values, x 2 and x.,2, are obtained for x® so that the
general solution, bounded a% the origin of coordinates, for the system of
equations (2.7), has the form

B B D, Dy
v()= }T‘;J“% (kyr) + 73; Jtoy, (kar)y  8(0) = v Tia, ) + 775 T 1y, Vear) (2.12)
Among the four constants entering into (2.12) only two will be independent;
according to (2.10)

_ mCD, mCB,
Bi=FT0rna—m) DT aP—R) 2.13)

Ccefficients D, and B; are subject to determination from boundary condi-
tions (2.8) on the surface of the fluld sphere. It is easy to see that two
types of solutions exist which satisfy these conditions

D mCD Ty, (ar)
0 B, =0, 0,00 = iy ) w0 =F Ty g ’*{,; (2.14)

B mCBy 7141, (ka?)
2) D1 = 0, Vy (") = V—EJHJ/'("”), 62 (") =A.P — ;“3 ! ./V'-; (2.15)

According to the clagificatlion adopted in Section 1, the solution (2.14)
corresponds to "thermal” and (2.15) to "hydrodynamic perturbatlons . For
both pertutbations, the conditions (2.8) yleld

Tioy, k) =0 (3 =1,2,3,...) (2.16)
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Here »n 1s the number of nodes of the radial function. Equations $2.11)
and (2.16) determine decrements A, of "thermal" and decrements i, of "hydro-
dynamic” perturbations as functions of Rayleigh number ¢

M = 35 @ + ) bt — (@ — 9 10 F ) )

4m*C2P )‘/x]

X @.17)
i = 25| (P + D kel + (@ — 02 ket F 1

w§ also preseng the value for the normalizing integral, for example, for
the "hydrodynamic™ perturbations

(4 m) __ Pmxc?
S{ut tmn ¥ PTY, tmnd V= Ty, (k) 574 (T— ) [l G+ % m] (2.18)

The critical value (, above which the equilibrium of a fluid heated from
below 1s unstadble with respect to a perturbation with speciflic 1, m, n 1s
found from the condition

T x ; ] Aima = 0
;::::::§ | Computations yield
. A 1
! I C=——F3z—kn (2.19)
7 In heating from above, critical
1/ <’/// Cw, can be reached for whic? xl)
and 1\, as determined from (2.17
— ‘/A., coinciée
P 1
A 0
P — 1)3%k,*
// Cld="gpr L(I+1) (2.20)
2
¢ while integral (2.18) becomes zero.
- - For (¢ > (O, two osclllatory per-
400 00 Y 100 40 turbations*appear oscillating wilth
Fig. 1 the frequency

m /s —
—_ 3 __ (.2
[pz (l+i)T VCE=C,2 (2.21)
Real parts of decrements of these pertutbations do not depend on (¢ and
are equal to A, .
We note that the relationship
Cud (P —1)2
T2 =~ (2.22)
does not deperid on the index of perturbation and will be general for the
entire spectrum of decrements. Several lower decrements for a fluid with
P = 2 are presented in Fig.l where curve 1 corresponds to values 1=m=n-=1,

curve 2 to values ! =m =2, n =1 and curve 3 to values 1 =2, m=n=1.
Heatlng from below corresponds to negative Rayleigh numbers.

The problem which was examined can also be solved for other boundary con-
ditions. For example, in the case of thermally insulated walls (e'(r¥ = 0)
decrements A({(¢) are found from Equation

gy, () [(E A4 1) Ty (Ba) + Koy oy (k)] 8 — ky?
Tros, ) T+ D) Ty, o) T Bl oy, (B)] — = gt

where ), and }, are expressed through X and ¢ from (2.11).

(2.23)
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